

NEET(UG)-2018 TEST PAPER WITH ANSWER (HELD ON SUNDAY 06th MAY, 2018)

CHEMISTRY

- **46.** A mixture of $2.3\,\mathrm{g}$ formic acid and $4.5\,\mathrm{g}$ oxalic acid is treated with conc. H_2SO_4 . The evolved gaseous mixture is passed through KOH pellets. Weight (in g) of the remaining product at STP will be
 - (1) 1.4
- (2) 3.0
- (3) 2.8
- (4) 4.4

Ans. (3)

- **47.** Nitration of aniline in strong acidic medium also gives m-nitroaniline because
 - (1) In spite of substituents nitro group always goes to only m-position.
 - (2) In electrophilic substitution reactions amino group is meta directive.
 - (3) In absence of substituents nitro group always goes to m-position
 - (4) In acidic (strong) medium aniline is present as anilinium ion.

Ans. (4)

- **48.** Which of the following oxides is most acidic in nature?
 - (1) MgO
- (2) BeO
- (3) BaO
- (4) CaO

Ans. (2)

- **49.** The difference between amylose and amylopectin is
 - (1) Amylopectin have 1 ightarrow 4 lpha-linkage and 1ightarrow 6 lpha-linkage
 - (2) Amylose have 1 \rightarrow 4 α -linkage and 1 \rightarrow 6 β -linkage
 - (3) Amylopectin have $1 \to 4$ $\alpha\text{-linkage}$ and $1 \to 6$ $\beta\text{-linkage}$
 - (4) Amylose is made up of glucose and galactose

Ans. (1)

- **50.** Regarding cross-linked or network polymers, which of the following statements is **incorrect?**
 - (1) They contain covalent bonds between various linear polymer chains.
 - (2) They are formed from bi-and tri-functional monomers.
 - (3) Examples are bakelite and melamine.
 - (4) They contain strong covalent bonds in their polymer chains.

Ans. (4)

51. In the reaction

$$OH \longrightarrow O^-Na^+$$

$$CHCl_3 + NaOH \longrightarrow CHO$$

- (1) dichloromethyl cation (CHCl₂)
- (2) formyl cation (CHO)

the electrophile involved is

- (3) dichloromethyl anion (CHCl $_2$)
- (4) dichlorocarbene (:CCl₂)

Ans. (4)

- **52.** Carboxylic acid have higher boiling points than aldehydes, ketones and even alcohols of comparable molecular mass. It is due to their
 - (1) formation of intramolecular H-bonding
 - (2) formation of carboxylate ion
 - (3) more extensive association of carboxylic acid via van der Waals force of attraction
 - (4) formation of intermolecular H-bonding.

Ans. (4)

53. Compound A, $C_8H_{10}O$, is found to react with NaOI (produced by reacting Y with NaOH) and yields a yellow precipitate with characteristic smell.

A and Y are respectively

(1)
$$H_3C$$
 \longrightarrow CH_2 -OH and I_2

(2)
$$\sim$$
 CH₂ – CH₂–OH and I₂

(3)
$$\begin{array}{c} \begin{array}{c} \\ \\ \\ \end{array} \begin{array}{c} \\ \\$$

(4)
$$CH_3$$
 OH and I_2

Ans. (3)

- The correct difference between first- and second-order reaction is that
 - (1) the rate of a first-order reaction does not depend on reactant concentration; the rate of a secondorder reaction does depend on reactant concentrations.
 - (2) the half-life of a first-order reaction does not depend on [A]0; the half-life of a second-order reaction does depend on [A]₀
 - (3) a first-order reaction can be catalyzed: a second-order reaction cannot be catalyzed.
 - (4) the rate of a first-order reaction does depend on reactant concentrations; the rate of a second-order reaction does not depend on reactant concentrations

Ans. (2)

- **55.** Among CaH₂, BeH₂, BaH₂, the order of ionic character is
 - (1) $BeH_2 < CaH_2 < BaH_2$
 - (2) $CaH_2 < BeH_2 < BaH_2$
 - (3) $BeH_2 < BaH_2 < CaH_2$
 - (4) $BaH_2 < BeH_2 < CaH_2$

Ans. (1)

Consider the change in oxidation state of Bromine **56**. corresponding to different emf values as shown in the diagram below:

$$BrO_4^- \xrightarrow{1.82 \text{ V}} BrO_3^- \xrightarrow{1.5 \text{ V}} HBrO$$

$$Br^- \xleftarrow{1.0652 \text{V}} Br_2 \xleftarrow{1.595 \text{ V}}$$

Then the species undergoing disproportionation is:-

- (1) BrO $_{3}^{-}$
- (2) BrO_4^-
- (3) Br₂
- (4) HBrO

Ans. (4)

- In which case is the number of molecules of water 57. maximum?
 - (1) 18 mL of water
 - (2) 0.18 g of water
 - (3) 0.00224 L of water vapours at 1 atm and 273 K
 - (4) 10^{-3} mol of water

Ans. (1)

- **58**. Magnesium reacts with an element (X) to form an ionic compound. If the ground state electronic configuration of (X) is $1s^2 2s^2 2p^3$, the simplest formula for this compound is
 - $(1) Mg_2X_3$
- (2) MgX₂
- (3) Mg₂X
- $(4) Mq_3X_2$

Ans. (4)

- **59**. Iron exhibits bcc structure at room temperature. Above 900°C, it transforms to fcc structure. The ratio of density of iron at room temperature to that at 900°C (assuming molar mass and atomic radii of iron remains constant with temperature) is

 - (1) $\frac{\sqrt{3}}{\sqrt{2}}$ (2) $\frac{4\sqrt{3}}{3\sqrt{2}}$ (3) $\frac{3\sqrt{3}}{4\sqrt{2}}$ (4) $\frac{1}{2}$

Ans. (3)

- 60. Which one is a **wrong** statement?
 - (1) Total orbital angular momentum of electron in 's' orbital is equal to zero
 - (2) An orbital is designated by three quantum numbers while an electron in an atom is designated by four quantum numbers.
 - (3) The electronic configuration of N atom is

2p	$_{x}^{1}$ $2p_{y}^{1}$	$2p_z^1$
1	1	↓

(4) The value of m for d_{z2} is zero

Ans. (3)

61. Consider the following species:

Which one of these will have the highest bond order?

- (1) NO
- $(2) CN^{-}$
- (3) CN+
- (4) CN

Ans. (2)

- 62. Which of the following statements is **not** true for halogens?
 - (1) All form monobasic oxyacids.
 - (2) All are oxidizing agents.
 - (3) All but fluorine show positive oxidation states.
 - (4) Chlorine has the highest electron-gain enthalpy.

Ans. (Bonus)

NEET(UG)-2018

- **63.** Which one of the following elements is unable to form MF_6^{3-} ion?
 - (1) Ga
- (2) AI
- (3) B
- (4) In

Ans. (3)

- **64.** In the structure of CIF₃, the number of lone pairs of electrons on central atom 'Cl' is
 - (1) one
- (2) two
- (3) four
- (4) three

Ans. (2)

- **65.** Considering Ellingham diagram, which of the following metals can be used to reduce alumina? (1) Fe (2) Zn (3) Mg (4) Cu
- Ans. (3)
- **66.** The correct order of atomic radii in group 13 elements is
 - (1) B < Al < In < Ga < Tl
 - (2) B < Al < Ga < In < Tl
 - (3) B < Ga < Al < Tl < In
 - (4) B < Ga < Al < In < Tl

Ans. (4)

- **67.** The correct order of N-compounds in its decreasing order of oxidation states is
 - (1) HNO₃, NO, N₂, NH₄Cl
 - (2) HNO₃, NO, NH₄Cl, N₂
 - (3) HNO₃, NH₄Cl, NO, N₂
 - (4) NH₄Cl, N₂, NO, HNO₃

Ans. (1)

- **68.** On which of the following properties does coagulating power of an ion depend?
 - (1) The magnitude of the charge on the alone
 - (2) Size of the ion alone
 - (3) Both magnitude and sign of the charge the ion
 - (4) The sign of charge on the ion alone

Ans. (3)

- **69.** Following solutions were prepared by mixing different volumes of NaOH and HCl of different concentrations:
 - a. $60mL\frac{M}{10}HCl + 40mL\frac{M}{10}NaOH$
 - b. $55mL\frac{M}{10}HCl + 45mL\frac{M}{10}NaOH$
 - c. $75mL\frac{M}{5}HCl + 25mL\frac{M}{5}NaOH$
 - $d. \quad 100 mL \frac{M}{10} HCl + 100 mL \frac{M}{10} NaOH$

pH of which one of them will be equal to 1?

(1) b

(2) a

(3) d

(4) c

Ans. (4)

70. The solubility of BaSO₄ in water 2.42×10^3 gL⁻¹ at 298 K. The value of solubility product (K_{sp}) will be

(Given molar mass of $BaSO_4 = 233 \text{ g mol}^{-1}$)

- (1) $1.08 \times 10^{-10} \text{ mol}^2 \text{ L}^{-2}$
- (2) $1.08 \times 10^{-12} \text{ mol}^2 \text{ L}^{-2}$
- (3) $1.08 \times 10^{-14} \text{ mol}^2 \text{ L}^{-2}$
- (4) $1.08 \times 10^{-8} \text{ mol}^2 \text{ L}^{-2}$

Ans. (1)

- **71.** Given van der Waals constant for NH_3 , H_2 and CO_2 are respectively 4.17, 0.244, 1.36 and 3.59, which one of the following gases is most easily liquefied?
 - (1) NH_3
- $(2) H_2$
- (3) O_2
- $(4) CO_2$

Ans. (1)

- **72.** The compound A on treatment with Na gives B, and with PCl₅ gives C. B and C react together to give diethyl ether. A, B and C are in the order
 - (1) C₂H₅OH, C₂H₆, C₂H₅Cl
 - (2) C₂H₅OH, C₂H₅Cl, C₂H₅ONa
 - (3) C_2H_5Cl , C_2H_6 , C_2H_5OH
 - (4) C₂H₅OH, C₂H₅ONa, C₂H₅Cl

Ans. (4)

- **73.** Hydrocarbon (A) reacts with bromine by substitution to form an alkyl bromide which by Wurtz reaction is converted to gaseous hydrocarbon containing less than four carbon atoms. (A) is
 - (1) CH≡CH
- (2) $CH_2 = CH_2$
- (3) CH₃-CH₃
- $(4) CH_4$

Ans. (4)

74. The compound C_7H_8 undergoes the following reactions:

$$C_7H_8 \xrightarrow{3Cl_2/\Delta} A \xrightarrow{Br_2/Fe} B \xrightarrow{Zn/HCl} C$$

The product 'C' is

- (1) m-bromotoluene
- (2) o-bromotoluene
- (3) 3-bromo-2,4,6-trichlorotoluene
- (4) p-bromotoluene

Ans. (1)

- **75.** Which oxide of nitrogen is **not** a common pollutant introduced into the atmosphere both due to natural and human activity?
 - (1) N_2O_5
 - (2) NO₂
 - (3) N_2O
 - (4) NO

Ans. (1)

76. For the redox reaction

 $MnO_4^- + C_2O_4^{2-} + H^+ \longrightarrow Mn^{2+} + CO_2 + H_2O$ the correct coefficients of the reactants for the balanced equation are

	MnO_4^-	$C_2O_4^{2-}$	H^+
(1)	16	5	2
(2)	2	5	16
(3)	2	16	5
(4)	5	16	2

Ans. (2)

- 77. Which one of the following conditions will favour maximum formation of the product in the reaction,
 - $A_2(g) + B_2(g) \rightleftharpoons X_2(g) \Delta_r H = -X kJ$?
 - (1) Low temperature and high pressure
 - (2) Low temperature and low pressure
 - (3) High temperature and high pressure
 - (4) High temperature and low pressure

Ans. (1)

- **78.** The correction factor 'a' to the ideal gas equation corresponds to
 - (1) density of the gas molecules
 - (2) volume of the gas molecules
 - (3) electric field present between the gas molecules
 - (4) forces of attraction between the gas molecules

Ans. (4)

- **79.** When initial concentration of the reactant is doubled, the half-life period of a zero order reaction
 - (1) is halved
 - (2) is doubled
 - (3) is tripled
 - (4) remains unchanged

Ans. (2)

- **80.** The bond dissociation energies of X_2 , Y_2 and XY are in the ratio of 1:0.5:1. ΔH for the formation of XY is -200 kJ mol⁻¹. The bond dissociation energy of X_2 will be
 - (1) 200 kJ mol⁻¹
 - (2) 100 kJ mol⁻¹
 - (3) 800 kJ mol⁻¹
 - (4) 400 kJ mol⁻¹

Ans. (3)

81. Identify the major products P, Q and R in the following sequence of reaction:

$$\begin{array}{c|c}
& Anhydrous \\
& AlCl_3
\end{array}
P \xrightarrow{\text{(i) } O_2} Q + R$$

$$P \qquad Q \qquad R$$

(4)
$$CH(CH_3)_2$$
, $CH_3-CO-CH_3$

- Ans. (4)
- **82.** Which of the following compounds can form a zwitterion?
 - (1) Aniline
- (2) Acetanilide
- (3) Benzoic acid
- (4) Glycine

Ans. (4)

NEET(UG)-2018

- **83.** The type of isomerism shown by the complex $[CoCl_2(en)_2]$ is
 - (1) Geometrical isomerism
 - (2) Coordination isomerism
 - (3) Ionization isomerism
 - (4) Linkage isomerism

Ans. (1)

- **84.** Which one of the following ions exhibits d–d transition and paramagnetism as well?
 - (1) CrO₄²⁻
- (2) $Cr_2O_7^{2-}$
- (3) MnO₄
- (4) MnO_4^{2-}

Ans. (4)

- **85.** The geometry and magnetic behaviour of the complex $[Ni(CO)_4]$ are
 - (1) square planar geometry and diamagnetic
 - (2) tetrahedral geometry and diamagnetic
 - (3) square planar geometry and paramagnetic
 - (4) tetrahedral geometry and paramagnetic

Ans. (2)

- **86.** Iron carbonyl, $Fe(CO)_5$ is
 - (1) tetranuclear
- (2) mononuclear
- (3) trinuclear
- (4) dinuclear

Ans. (2)

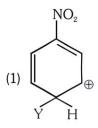
87. Match the metal ions given in Column I with the spin magnetic moments of the ions given in Column II and assign the *correct* code:

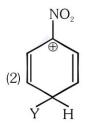
Column I

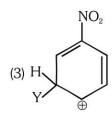
Column II

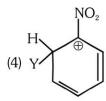
- a. Co³⁺
- i. $\sqrt{8}$ B.M.
- b. Cr³⁺
- ii. $\sqrt{35}$ B.M.
- c. Fe³⁺
- iii. $\sqrt{3}$ B.M.
- d. Ni²⁺
- iv. $\sqrt{24}$ B.M.
- v. √15 B.M.

a b c d


- (1) iv v ii i
- (2) i ii iii iv
- (3) iv i ii iii
- (4) iii v i ii


Ans. (1)


- **88.** Which of the following is correct with respect to -I effect of the substituents ? (R = alkyl)
 - (1) $-NH_2 < -OR < -F$
 - (2) $-NR_2 < -OR < -F$
 - $(3) NH_2 > OR > F$
 - $(4) NR_2 > OR > F$


Ans. (1/2)

89. Which of the following carbocations is expected to be most stable?

Ans. (3)

- **90.** Which of the following molecules represents the order of hybridisation sp², sp², sp, sp from left to right atoms?
 - (1) $HC \equiv C C \equiv CH$
 - (2) $CH_2 = CH C \equiv CH$
 - (3) $CH_2 = CH CH = CH_2$
 - (4) $CH_3 CH = CH CH_3$

Ans. (2)